USFS RED RIVER CAMPGROUND (PWS # 2250101) SOURCE WATER ASSESSMENT FINAL REPORT ### March 12, 2002 # State of Idaho Department of Environmental Quality **Disclaimer:** This publication has been developed as part of an informational service for the source water assessments of public water systems in Idaho and is based on the data available at the time and the professional judgement of the staff. Although reasonable efforts have been made to present accurate information, no guarantees, including expressed or implied warranties of any kind, are made with respect to this publication by the State of Idaho or any of its agencies, employees, or agents, who also assume no legal responsibility for the accuracy of presentations, comments, or other information in this publication. The assessment is subject to modification if new data is produced. ### **Executive Summary** Under the Federal Safe Drinking Water Act Amendments of 1996, all states are required by the U.S. Environmental Protection Agency (EPA) to assess every source of public drinking water for its relative sensitivity to contaminants regulated by the Act. The Idaho Department of Environmental Quality (DEQ) is completing the assessments for all Idaho public drinking water systems. The assessment for your particular drinking water source is based on a land use inventory within a 1,000-foot radius of your drinking water source, sensitivity factors associated with the source, and characteristics associated with either your aquifer or watershed in which you live. This report, Source Water Assessment for USFS Red River Campground: Public Water System (PWS) #2250101 describes the public drinking water system, the associated potential contaminant sources located within a 1,000-foot boundary around the drinking water source, and the susceptibility (risk) that may be associated with any associated potential contaminants. This assessment should be used as a planning tool, taken into account with local knowledge and concerns, to develop and implement appropriate protection measures for this system. The results should not be used as an absolute measure of risk and is not intended to undermine the confidence in your water system. The *USFS Red River Campground* drinking water system consists of one developed spring, located on a hill approximately 60 feet above a small stream that flows into the Red River. The water is stored in a 1,000-gallon storage tank. The system rated low susceptibility to inorganic contaminants (IOCs), volatile organic contaminants (VOCs), synthetic organic contaminants (SOCs), and microbial contaminants. The lack of contaminant sources around the spring contributed to the low score. The initial computer generated contaminant source inventory conducted by the DEQ did not locate any potential contaminant source with the 1,000-foot boundary. A copy of the susceptibility analysis worksheet for the spring for your system along with a map showing any potential contaminant sources is included with this summary. ## **Susceptibility Analysis** The susceptibility of the source at the intake was ranked as high, moderate, or low risk according to the following considerations: hydrologic characteristics, physical integrity and construction of the intake, land use characteristics, and potentially significant contaminant sources. The susceptibility rankings are specific to a particular potential contaminant or category of contaminants. Therefore, a high susceptibility rating relative to one potential contaminant does not mean that the water system is at the same risk for all other potential contaminants. The relative ranking that is derived for each intake is a qualitative, screening-level step that, in many cases, uses generalized assumptions and best professional judgement. The following summaries describe the rationale for the susceptibility ranking. ### **System Construction** System construction directly affects the ability of the intake to protect the aquifer from contaminants. System construction scores are reduced when information shows that potential contaminants will have a more difficult time reaching the intake of the spring. Lower scores imply a system is less vulnerable to contamination. For example, if the intake structure of the surface water system is properly located and constructed to minimize impacts from potential contaminant sources, then the possibility of contamination is reduced and the system construction score goes down. If the system was constructed in a way that the infiltration gallery is separated from any surface water so as to provide some kind of natural filtration, the water quality is more protected and the system score is reduced. The USFS Red River Campground drinking water system rated high susceptibility for system construction. According to a sanitary survey performed in 1999, the intake structure of the spring is not properly protected from potential contaminant sources. Corrective actions listed on the survey included diverting water away from the spring by creating a ditch above the spring. However, the system has a completely buried spring box and a 4-foot fence surrounding the system. #### **Potential Contaminant Source and Land Use** The spring intake rated low for IOCs (e.g., arsenic, nitrate), VOCs (e.g., petroleum products), SOCs (e.g., pesticides), and microbial contaminants (e.g., bacteria). The lack of potential contaminant sites surrounding the spring and the limited land use contributed to the low score. ### **Final Susceptibility Rating** Detections of IOCs above drinking water standard maximum contaminant levels (MCLs), a detection of total coliform bacteria, fecal coliform bacteria, or *E-coli* bacteria, or a detection of an SOC or VOC in a water chemistry test will automatically give a high susceptibility rating for an intake despite the land use of the area because a pathway for contamination already exists. In terms of total susceptibility, the spring intake rated low due to the lack of contaminant sources around the spring and the limited land use. ## **Options for Drinking Water Protection** This assessment should be used as a basis for determining appropriate new protection measures or re-evaluating existing protection efforts. No matter what ranking a source receives, protection is always important. Whether the source is currently located in a "pristine" area or an area with numerous industrial and/or agricultural land uses, the way to ensure good water quality in the future is to act now to protect valuable water supply resources. For USFS Red River Campground, drinking water protection activities should focus on correcting any deficiencies outlined in the Sanitary Survey (an inspection conducted every five years with the purpose of determining the physical condition of a water system's components and its capacity). Partnerships with state and local agencies and industry groups should be established and are critical to success. You may want to establish a dialog with the relevant state and local agencies (DEQ, the Health Department) related to the efficient and correct protection of springs as a drinking water source. Drinking water protection activities should be aimed at long-term management strategies even though these strategies may not yield results in the near term. Due to the time involved with the movement of ground water, drinking water protection activities should be aimed at long-term management strategies even though these strategies may not yield results in the near term. A strong public education program should be a primary focus of any drinking water protection plan because the delineations show large areas of urban land use. There are multiple resources available to help communities implement protection programs, including the Drinking Water Academy of the U.S. Environmental Protection Agency. For areas where transportation corridors transect the delineation, the Department of Transportation should be included in protection activities. Drinking water protection activities for agriculture should be coordinated with the Idaho State Department of Agriculture, the Soil Conservation Commission, the local Soil Conservation District, and the Natural Resources Conservation Service. #### Assistance Public water suppliers and others may call the following DEQ offices with questions about this assessment and to request assistance with developing and implementing a local protection plan. In addition, draft protection plans may be submitted to the DEQ office for preliminary review and comments. Lewiston Regional DEQ Office (208) 799-4370 State DEQ Office (208) 373-0502 Website: http://www2.state.id.us/deq Water suppliers serving fewer than 10,000 persons may contact John Bokor, Idaho Rural Water Association, at 1-800-962-3257 for assistance with drinking water protection (formerly wellhead protection) strategies. **USFS Red River Campground: Spring** #### POTENTIAL CONTAMINANT INVENTORY LIST OF ACRONYMS AND DEFINITIONS <u>AST (Aboveground Storage Tanks)</u> – Sites with aboveground storage tanks. <u>Business Mailing List</u> – This list contains potential contaminant sites identified through a yellow pages database search of standard industry codes (SIC). <u>CERCLIS</u> – This includes sites considered for listing under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). CERCLA, more commonly known as Asuperfund@is designed to clean up hazardous waste sites that are on the national priority list (NPL). <u>Cyanide Site</u> – DEQ permitted and known historical sites/facilities using cyanide. <u>Dairy</u> – Sites included in the primary contaminant source inventory represent those facilities regulated by Idaho State Department of Agriculture (ISDA) and may range from a few head to several thousand head of milking cows. <u>Deep Injection Well</u> – Injection wells regulated under the Idaho Department of Water Resources generally for the disposal of stormwater runoff or agricultural field drainage. Enhanced Inventory – Enhanced inventory locations are potential contaminant source sites added by the water system. These can include new sites not captured during the primary contaminant inventory, or corrected locations for sites not properly located during the primary contaminant inventory. Enhanced inventory sites can also include miscellaneous sites added by the Idaho Department of Environmental Quality (IDEQ) during the primary contaminant inventory. <u>Floodplain</u> – This is a coverage of the 100year floodplains. <u>Group 1 Sites</u> – These are sites that show elevated levels of contaminants and are not within the priority one areas. <u>Inorganic Priority Area</u> – Priority one areas where greater than 25% of the wells/springs show constituents higher than primary standards or other health standards. <u>Landfill</u> – Areas of open and closed municipal and non-municipal landfills. <u>LUST (Leaking Underground Storage Tank)</u> – Potential contaminant source sites associated with leaking underground storage tanks as regulated under RCRA. <u>Mines and Quarries</u> – Mines and quarries permitted through the Idaho Department of Lands.) <u>Nitrate Priority Area</u> – Area where greater than 25% of wells/springs show nitrate values above 5mg/l. NPDES (National Pollutant Discharge Elimination System) — Sites with NPDES permits. The Clean Water Act requires that any discharge of a pollutant to waters of the United States from a point source must be authorized by an NPDES permit. <u>Organic Priority Areas</u> – These are any areas where greater than 25 % of wells/springs show levels greater than 1% of the primary standard or other health standards. Recharge Point – This includes active, proposed, and possible recharge sites on the Snake River Plain. RICRIS – Site regulated under Conservation Recovery Act (RCRA). RCRA is commonly associated with the cradle to grave management approach for generation, storage, and disposal of hazardous wastes. SARA Tier II (Superfund Amendments and Reauthorization Act Tier II Facilities) – These sites store certain types and amounts of hazardous materials and must be identified under the Community Right to Know Act. Toxic Release Inventory (TRI) – The toxic release inventory list was developed as part of the Emergency Planning and Community Right to Know (Community Right to Know) Act passed in 1986. The Community Right to Know Act requires the reporting of any release of a chemical found on the TRI list. <u>UST (Underground Storage Tank)</u> – Potential contaminant source sites associated with underground storage tanks regulated as regulated under RCRA. <u>Wastewater Land Applications Sites</u> – These are areas where the land application of municipal or industrial wastewater is permitted by IDEQ. <u>Wellheads</u> – These are drinking water well locations regulated under the Safe Drinking Water Act. They are not treated as potential contaminant sources. **NOTE:** Many of the potential contaminant sources were located using a geocoding program where mailing addresses are used to locate a facility. Field verification of potential contaminant sources is an important element of an enhanced inventory. Where possible, a list of potential contaminant sites unable to be located with geocoding will be provided to water systems to determine if the potential contaminant sources are located within the source water assessment area. The final scores for the susceptibility analysis were determined using the following formulas: 1) Final Score = Intake Construction + Potential Contaminant/Land Use Final Susceptibility Scoring: - 0 7 Low Susceptibility - 8 15 Moderate Susceptibility - 16 21 High Susceptibility | Public Water System Number | USFS RED RIVER CAMPGROUND
2250101 | Well# | : SPRING | 2/7/0 | 2 2:24:48 PM | |--|--------------------------------------|--------------|--------------|--------------|--------------------| | l. System Construction | | SCORE | | | | | Intake structure properly constructred | NO | 1 | | | | | Infiltration gallery or well under the direct influence of Surface Water | NO | 0 | | | | | | Total System Construction Score | 3 | | | | | . Potential Contaminant Source / Land Use | | IOC
Score | VOC
Score | SOC
Score | Microbial
Score | | Predominant land use type (land use or cover) | BASALT FLOW, UNDEVELOPED, OTHER | 0 | 0 | 0 | 0 | | Farm chemical use high | NO | 0 | 0 | 0 | | | Significant contaminant sources * | NO | | | | | | Sources of class II or III contaminants or microbials | not present | 0 | 0 | 0 | 0 | | Agricultural lands within 500 feet | NO | 0 | 0 | 0 | 0 | | Three or more contaminant sources | NO | 0 | 0 | 0 | 0 | | Sources of turbidity in the watershed | NO | 0 | 0 | 0 | 0 | | Total Potential Contaminant Source / Land Use Score | | 0 | 0 | 0 | 0 | | . Final Susceptibility Source Score | | 3 | 3 | 3 | 3
 | | . Final Sourcel Ranking | | Low | Low | Low | Low | Public Water System Name : Surface Water Susceptibility Report ^{*} Special consideration due to significant contaminant sources The source water has no special susceptibility concerns